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Statistical Geometry of Four Calottes on a Sphere 

S. Prestipino Giarritta ~ and P. V. Giaquinta 2 

Received November 16, 1993 

We calculate the configurational integral and reduced distribution functions for 
a system of four rigid spherical calottes, a model which allows an exact analysis 
of excluded-volume effects resulting from the interplay between statistics and 
geometry. 

KEY WORDS: Two-dimensional models; hard disks; spherical boundary 
conditions; excluded volume; freezing transition; percolation. 

1. INTRODUCTION 

The problem of arranging a number  of equal rigid particles on a sphere in 
the most  efficient way dates back to Tammes tl) and is of interest in several 
fields, such as geometry, chemical physics and biology, t21 A statistical 
mechanical approach to this problem was initially undertaken by Kratky, 
who introduced the use of spherical boundary  conditions and derived the 
virial equation of state in this non-Euclidean geometry, t3~ He also 
calculated the area of intersection of three spherical calottes, t4~ More 
recently, the statistical thermodynamics of this model was extensively dis- 
cussed by Post and Glandt,  c5"6~ who provided the analytical expression of 
the configurational integral for the three-particle case. Monte  Carlo com- 
puter simulations have been carried out in order to clarify the extent to 
which the curvature of the hosting surface modifies the thermodynamic 
behavior of the model in the region of high densities as compared with the 
Euclidean case of hard disks on a plane/78~ The related question of the 
random sequential addition of particles onto a spherical surface has also 
been investigated.! 9) 
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In this paper we extend the theoretical analysis performed in ref. 5 to 
include the case of four calottes, further calculating the pair and triplet 
distribution functions. 

The paper is arranged as follows: In Section 2 we introduce the model 
together with some basic statistical mechanical relations. In Section 3, we 
review the two- and three-body cases, while the expressions for the con- 
figurational integral and for the radial and triplet distribution functions 
of four calottes are presented in Section 4. The results are discussed in 
Section 5. Section 6 is finally devoted to concluding remarks. 

2. THE M O D E L  

We consider a system of N equal rigid spherical calottes with curved 
diameter a, free to move on the surface of a sphere with radius R. The 
particle centers interact through the hard-core potential 

where 

v(1, 2 ..... N ) =  7'. v(d,j) (2.1) 
i < j  

{ + ~ ,  di j<a  (2.2) 
v(dij) = 0, dij > tr 

d o. is the distance which is measured along the geodesic joining particles i 
and j. 

The canonical partition function can be written as Z = Z~d �9 QN, where 
Zia is the two-dimensional ideal gas term and 

QN = ( 4 @  f dO, d122.., dr2 N e -aV'','-,''', N, (2.3) 

is the configurational integral, dO =- sin 0 dO d(~ is the element of solid angle 
in spherical coordinates, and fl is the inverse temperature. 

The peculiar interaction we are considering reduces the calculation of 
the configurational integral to a purely geometrical problem, i.e., "counting" 
the number of distinct configurations obtained by dropping N equal non- 
overlapping catottes onto the spherical surface. 

We observe that, for given N, QN depends on one single parameter 
ct=-tr/R which is related to the number density via the relation pa2= 
(N/4n) a-'. The virial equation of state is obtained from 

,24, 
p d~ 
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and can be alternatively expressed as (3) 

- - =  + rtptr2 f sin ct'~ fie I g(~) (2.5) 
p 2 \ ~ J 

where g(0~) is the value at contact of the radial distribution function 
(RDF): 

( 1 )  1 
g(O)= 1 -  (4rON_2Q~fdf23...df2Ne-~V(l'2"3""N) (2.6) 

0 is the angular separation between particle.s 1 and 2. 

3. RESULTS FOR T W O  A N D  T H R E E  CALOTTES 

3.1. C o n f i g u r a t i o n a l  In tegra l  

The calculation of the thermodynamic properties is quite straight- 
forward for N =  2, leading to Q2 = cos2(ct/2) and flP/p = 1 + (~t/4)tg(ct/2). 
In this case ct ranges between 0 and n. 

An expression for the configurational integral of three particles on a 
sphere has already been given by Post and Glandt. (5) In order to introduce 
some notations that we shall need later, we shall retrace here the most 
relevant steps in the calculation of Q3. However, we shall follow a more 
direct route than that provided by the virial expansion, finally achieving a 
more compact analytical result. 

Let us fix the relative angular distance 0 between particles 1 and 2. 
Call 03(0; ct) the solid angle which is then available to the center of particle 
3. It then follows that 

Q3= ~--~ f f  123(O; ct)sin O dO (3.1) 

Now, let us indicate as 4R2f(O; ~) the area of the surface "slice" shared by 
a pair of spherical calottes of radius a separated by a distance RO (where 
ct ~< 0 <~ 2ct). A simple calculation yields 

with 

f ( O; ot ! = arcsin { cos ( ~ ) sin [ z( O; ~ ) ] } - z( O; ct ) cos 

r(0; ~ )=  arccos I- / q/tg(O.2)/ 
L tgct J 

(3.2) 

(3.3) 
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After recalling that  the area of a calotte with radius tr is 
2~R'~(1 - cos ct), we find for ct < rt/2 

J'4n cos ct + 4f(O; ct), 
I23(0; Ct) 

4x cos ct, 

ct ~< 0.<.< 2ct 
(3.4) 

2ct~<O~<n 

while, in the range x/2 < ct < 2x/3, we obtain: 

~'4x cos ct + 4f(0; ct), 
03(0; ~ ) =  10, 

ct <<. O <~ 2 n -  2ct 
(3.5) 

2 x - 2 ~ < 0 ~ < n  

For  e >  2x/3, 123(0; ct)= 0, as it is no longer possible to locate three non- 
overlapping calottes on the sphere. Let us also note that  in the closest- 
packed arrangement  three calottes are centered at the vertices of  the 
equilateral triangle with max imum area inscribed in the sphere. (1'2) 

Given Eqs. (3.4) and (3.5), the expression for the configurational 
integral becomes 

~ c o s e  ( + cos e) + }--~ f (  O; e ) sin O dO, 0 < ~ < ~  

Q 3 =  1 1 2~-2~ rc 27t 
~ cos ct ( - cos 2ct + cos e) + ~-~ ~ f(O; e) sin O dO, ~<~ot<<.-~ 

(3.6) 

After carrying out explicitly the nontrivial  integrals which appear  in 
Eq. (3.6), one arrives at the following result in closed analytical form (~~ 

3 [ (cos )l 
Q3=~-~ncos~ (1 -t-coscQ r c - a r c c o s  I + c o s ~  

1 
+ ~ (I - cos ct)(1 + 2 cos ct) 1/2 (3.7) 

This expression, while being equivalent to the result found by Post  and 
Glandt ,  tS~ is, however, much more compact .  3 The compressibili ty factor 
reads 

,sin,,,+,cos,,[ (,co,,) 1 t i P =  1 + n -  arccos (3.8) 
p 87tQ3 + cos 

Equation (3.7) differs from Z~ as given in Appendix B of ref. 5 by a factor A'-. We also note 
that Eq. (B2) of the cited paper contains a misprint and should in fact be divided by a 
factor n. 
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In the limit of vanishing surface curvature (ct ,~ 1 ), the pressure can be 
expanded in powers of p as 

fl--ff-P = 1 + 3 ptr2 + (92 x/~ n)  (pa2)2 + (9(p3) (3.9, 
p 18 

On the other hand, upon expanding the configurational integral of N 
calottes and then using Eq. (2.4), one arrives at the virial expansion for the 
pressure: 

1 + ~ B,+,(N) p' (3.10) 
P i=t 

where for the first two coefficients one has 

B2(N)=(1  1 )  B2 (3.11) 

In order to calculate the infinite-size values B2 and B 3 o n e  just needs the 
configurational integral of two and three calottes, respectively. The result- 
ing values are B2=lttr2/2 and B3=(4/3-x//3/rO B 2, which reproduce 
the corresponding virial coefficients of hard disks on a plane. Upon using 
Eqs. (3.11) and (3.12) for N = 3  in Eq. (3.10), one consistently recovers 
Eq. (3.9). 

Now consider the high-density limit. Define 6=2r~/3-ct ;  since for 
0...<6 ~ 1 

arccos = n - 2. + (9(6) (3.13) 
+ cos 

we find 
9 1/4 2 5  Q3=1--~.3  6 +(9(63) (3.14) 

so that, in the close-packing limit, the dominant contribution to tiP 
becomes (5~2/54)(2rc/3 - ~)-  t. 

3.2. Radial Distribution Function 

From the definition of the RDF one has 

g(O) ='~0'1 s ~), 

0 ~ 0 < ~  

a ~ 0 ~ n  
(3.15) 
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For ~ < rt/2, upon inserting the expression for f23(0; ~) as given by Eq. (3.4) 
we obtain 

g(O)=]~23[cos~+lf(o;ct,], ~ < 0 ~ 2 ~  (3.16) 

k.3Q3 cos c~, 2cc ~< 0 ~< re 

while, for re/2 < ~ < 2re/3, using Eq. (3.5), it follows that 

f o~ 0~<0<~ 

1 
{.0, 2rt - 2~ ~< 0 ~< n 

We note that, for r < re/2, given particles 1 and 2 sitting at the north and 
south poles, respectively, the passage through them of the third particle 
--along, say, the equatorial ring--is never inhibited. However, as soon as 

surpasses this threshold, particles 1 and 2 will be forced by particle 3 to 
approach each other on a range of angular distances shorter than re. This 
effect determines the "long-range" vanishing of the RDF. At the same time, 
particle 3 will no longer be able to pass through particles I and 2. 

It is easily verified that in both cases (3.16) and (3.17) the RDF is 
properly normalized: 

p f R2 sin O g(O) dO dqJ= N - 1 (3.18) 

with N = 3. 

4. C O N F I G U R A T I O N A L  INTEGRAL OF FOUR CALOTTES 

Let particle 1 lie at the north pole of the sphere. We assign angular 
coordinates (00, 0) and (0~, ~1) to particles 2 and 3, respectively. Further- 
more, let 03(00; c~) be the solid angle available to particle 3 given the posi- 
tions of particles 1 and 2 on the sphere. Correspondingly, 04(00, 01, ~ ;  ~) 
is the solid angle accessible to particle 4 after fixing particles 1, 2, and 3. 
The configurational integral becomes 

Q4 = 3-~R 2 sinOodOo f24(Oo, O,,(b,;~)sinOtdO, dfJ, (4.1) 
3 
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4.1. Low-Density  Regime ( o < n / 2 )  

Let us first examine the case 0t < n/2. It  is convenient  to consider the 
cases 0o ~< 2ct and 0o >/2= separately. As a result, Q4 = 11 + 12, where 

Ii  = 32g2 ~ sinOodOo ~4(Oo, Ol,~1;o~)sinOldOld~)l (4.2) 
3 

' I ;  Io I2 = 3--~-~ 2 sinOodOo ~4(Oo, O~,~,;e)sinO~dO~d~ (4.3) 
~ 3 

We start  by eva lua t ing /2 .  To  this aim, it is convenient  to associate its own 
excluded-area region to each calotte: such "augmented"  calottes (which will 
be referred to as 1', 2', and 3') may  overlap provided that  their centers 
keep at a distance greater  than a. Let A2 be the area which particle 3' 
shares with 1' and 2' (corresponding to one or two convex slices of a 
calotte). It  turns out that  

1 
C24(Oo, 01,(bl;ot)=4rt----~[3.2nR2(1-cosct)-A2] (4.4) 

so that  

where 

12 = 1 cos ct ( 1 + cos 2~t)( - 1 + 3 cos ct) + J2 (4.5) 

J2=3-~n 2 sinOodOo ~ - - i s m 0 ~  dO1 d(J~ (4.6) 

The integration domain  of the innermost  integral in Eq. (4.6) is critically 
sensitive to both  0o and ct. According to the value of ct, one should first 
divide the integration interval for 0o in subintervals which correspond to 
different excluded-area geometries as sketched in Fig. 1. The 0 o parti t ions 
considered for the calculation of 12 are: 

(i) c<<n/4: 2 ~ t < 3 c t < 4 c t < r ~ < 2 n - 4 c t .  

(ii) n/4<ct<2~z/7: 2 ~ t < 3 c t < 2 n - 4 ~ < n < 4 c t < 2 n - 3 c c  

(iii) 2n/7<ct<rc/3: 2 ~ < 2 7 t - 4 c t < 3 c t < T z < 2 r c - 3 c < .  

(iv) n/3<~<2n/5: 2 n - 4 c t < 2 c t < 2 n - 3 c t < n < 3 c t .  

(v) 2n/5<ot<n/2: 2 7 t - 3 c t < 2 c t < n < 3 c t .  

Here the entries beyond the upper  integration limit n have been added in 
order  to help the reader to select the relevant cases. We find 

822/75 /5-6 .2 t  
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(a )  

2ct< ~ < 3et 

1 

3~z< Oo < 4or 

1 

eo>4a 

(b)  , 

2 o) 

2or< Oo < 3 a  

l 

3ct < 00 < 4or 

( 

2r < % < 3ct 

Fig. 1. Excluded-area geometries relevant for the calculation of 12 in Eq. (4.3). The three 
sections of the figure refer to the cases ( a ) 0 o < 2 n - 4 a ,  (b)2n-4ot<Oo<2n-3~, and 
(c) 00 > 2n - 3a. Continuous lines are drawn about the centers (heavy dots) of particles 1 and 
2 so as to mark the boundaries of the augmented calottes, Dashed lines represent the loci of 
points lying 20 far from the center of each calotte. Numbers within parentheses identify the 
number of slices contributing to A 2, i.e., to the area which particle 3' shares with 1' and 2', 
in each integration subregion. 

J 2  

( l + c o s 2 c e ) i o - -  il , 0 < ~ < ;  

(--c~176176 ' -~<~oe<~--~ 

2__~(i5 1 i 6 ) ,  2 ,  rc 

(4 .7 )  
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where 

~ cL 

to = f(O;~)sinOdO=2rt[Q3-�89 +cosot)] (4.8a) 

11 = sin Oo dOo f(O1; ~) l~(Oo, 01; e) sin Ol dot (4.8b) 

2 ~  - 3 ~  ~ 

= ~2t" sin 0 o dO~ 2oo-, f(Ot ; ~)/~(0o, 01 ; ~) sin 01 dO~ (4.8c) 1 2  

f n  .f 2n - Oo - c, z3= s i n O o d O o  f(Ol;~x)sinOtd01 (4.8d) 
2 r t  3or - 

f" z4 sin 0 o doe .2,,- 0o-~ f = f(O,; =) p(0 o, 01; ~) sin 01 dO1 (4.8e) 
2 n  - -  3~x " J O 0 -  

f f  f~n - Oo - a 15 = sin 0 o dO o f(Ot; ~) sin 0t dot (4.8f) 
0t 

f2 r 0~ t 6 sin 0 o dO o .2, = f(Ol;a)#(Oo, Ol;a)sinOldOl (4.8g) 
= " 0  0 - -  

The function #(go, 0t ; ~), which appears in some of the integrals written 
above, represents the longitude (in absolute value) of the points lying on 
the border of calotte 2', having colatitude 01: 

( c~ ~ -  c~ 0~ c~ 01- ) (4.9) 
#(0o, 01; ~) = arccos sin 0 o sin 01 

The integrals in Eqs. (4.8b)-(4.8g) are to be evaluated by means of numeri- 
cal recipes. 

We come now to the calculation of I , .  In this case we have 

1 
124(Oo, Ot,fbl;ot)=4n--~[3.2nR2(1 -cos~x)-4R2f(Oo;~x)-Al] (4.10) 

where the quantity A I is to be evaluated according to the overlapping 
arrangements produced by the augmented calottes 1', 2', and 3'. Such 
arrangements can take seven different shapes (see Fig. 2). The cases c, d, 
and e, as well as f and g, are symmetrical. 

By inserting the expression (4.10) for g24(0o, 01, ~b~; ct) into I , ,  we get 

1 
It = ~ cos a ( - c o s  2= + cos a)( - 1 + 3 cos ct) 

+4-~ (--1 + 5 cos ~)io + 2--~ i7 + J ,  (4.11) 
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(a) (b) 

(c) (d) (e) 

(f) (g) 

Fig. 2. Sketches of three-particle arrangements with different overlap geometries relevant for 
the calculation of I, in Eq. (4.2). The region 6 ~ which is common to pairs of augmented 
calottes or to all of them has been shaded. Labels used to identify each arrangement are 
explicitly referred to in the text. 

where 

and  

2~ 

iT=f, [f(O;a)]2sin OdO (4.12) 

i .2= 14,  . 
JI  = 32rt2 j= sin 0o dOof - ~ s m  0t dOl d~, (4.13) 

Ja, R 

We  are n o w  left with the ca lcu la t ion  of J~. The  geometr ies  re levant  to 
the ca lcu la t ion  of this q u a n t i t y  are sketched in Fig. 3. In  par t icu lar ,  Fig. 3a 
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refers to the low-density arrangements. The label attached to each shaded 
zone specifies which case, among those classified in Fig. 2, applies when the 
center (0~, ~ ) of calotte 3 falls inside that zone. The continuous line mark- 
ing the border between the zones a and b is the locus of points lying at 
distance tr from point B -  = {0o, ~(0o; ~t)}, while the points belonging to the 
borderline between the zones c and b are one diameter apart from point 
A = {0o, - r ( 0 o ;  0t)}. The angles 0~(ct) and 0~(ct), which are referred to in 

f 

O<~<~ ~<~<~' ~~ 

~D) 1 I l 

2 f 

~< ao<eo' e;<eo<e~' co'< eo <2a 

a 

eo < e~' O'o'< eo < 2it 

Fig. 3. Excluded-area geometries relevant for the calculation of 11 in Eq. (4.2). The three 
sections of the figure refer to the cases ( a ) 0 o < 2 n - 4 c t ,  ( b ) 2 n - 4 a < 0 o < 2 n - 3 = ,  
(c) 00 > 27r-3n. The continuous lines centered on particles 1 and 2 mark the boundaries of 
each augmented calone. Dashed lines represent the loci of points lying 2a far from the center 
of each calotte. See the discussion in the text for further details. 
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Fig. 3, fulfi l l  the condit ions /~(0~, 2~; ~) = z(O'o; ~) and dist(A, B) = ~, 
respectively. Upon carrying out the calculations, we obtain 

0~(0t) = a r c c o s [ c o s  et (2 cos c t -  1)]  (4.14a) 

0~(e)  = a rccos  (4.14b) 
cos e + 1 

A p lo t  of  these funct ions  is s h o w n  in Fig.  4. W e  no te  tha t  e < 0 ;  < 0g < 2~ 
whenever  0 < e < re/2. F u r t h e r m o r e ,  the fo l lowing  inequal i t i es  ho ld :  

(i) c~<rc/3: c c < 2 c ~ < 2 ~ - 4 e < 2 r c - 3 c ~ .  

(ii) r c / 3 < e < 2 ~ / 5 : e < 2 ~ - 4 e < 2 e < 2 ~ - 3 e .  

(iii) 2 g / 5 < e < r c / 2 :  2 ~ - 4 c ~ < c ~ < 0 ; < 2 n - 3 e < 2 c c  

So far  we have  ident i f ied  different  i n t e g r a t i o n  regions ,  bu t  we have  no t  
yet  specif ied the s t ruc tu re  of  the in tegrand .  T o  this end,  let s~2 represen t  the  
a rea  of the slice c o m m o n  to ca lo t tes  1' and  2',  i.e., 4R2f(Oo; ~), a n d  the 
same for s~3 and  s23. W e  n o w  cons ide r  each of  the cases p re sen ted  in Fig.  2 
separa te ly :  

a--*A, = s 13 --].- $ 2 3  

b - - * A i  = s 1 3 + s 2 3 - (  

c ~ ,4 1 =sz3  + 3 2 3 - 3 1 2  

d, f --* Al=Sl3  

e, g ---+ .,41 = $23 

71" 
, ,  - , ,  o 

f:" ". I 
j .  �9 �9 ~ 1 7 6  

, : . J ' o , . . '  ".. i ". 

0 rt 0=.x 
i 

Fig. 4. The angles 0~ (lower continuous line) and 0~' (upper continuous line), as given by 
Eqs. (4.14a) and (4.14b), plotted as a function of tt up to 0max~arccos(-1/3). The angles 
2 n -  4~t and 27t- 3ct are also shown as dashed lines. 
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where ( is the area of the region common to all of the three calottes 1', 2', 
and 3'. Let T be the region of the spherical surface which is covered by 
calottes 1', 2', and 3'. We find 

~ = A( T)--  3 . 27rR2(1 - -C0S 0~)-'~- S12"+" $L3 "~- $23 (4.15) 

where A(T)  is the area of T. Consider now the decomposition of T as 
shown in Fig. 5: it is clear that the calculation of A(T)  becomes possible as 
soon as one calculates the internal angles of the triangle whose vertices are 
the particle centers of calottes 1, 2, and 3. The values of the angles centered 
at 1, 2, and 3 are ~b~, r 01,~bn), and ~(01, 0o,~1), respectively. The 
calculation of ~o~ = ~(0o, 0~, ~b~) is easier if one resorts to a reference frame 
transformation whose effect is moving particle 2 onto the north pole of the 
sphere. The result is 

[ sin 0~ c~ 0t - sin 01 c~ 0~ c~ ~b' ] 
r = arccos [(sin 0o cos ~l  ~ s~n O~ c ~  0o cos ~b I )2 + sin 2 01 sin 2 c, b l ] i/,_ 

(4.16) 

2 ' \  7 3 '  

Fig. 5. A geometrical construction useful for the calculation of the area A(T) which appears 
in Eq. (4.15). 
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and 

R2 ~b (~b~ + ~ot) = 2R2 fb ~b t (4.18c) 

we can write Jt in the form J~ = (1/2n)(K~ +Kz+K3), where Kt refers to 
the contributions resulting from regions labeled a, d, e, f, and g in Fig. 3, 
while Kz and K 3 are associated with regions c and b, respectively. We 
obtain 

I ( - c o s  2~ + cos ~ ) / o -  1 is, 2re 
= 0~<~ <~-~- (4.19a) 

1 ( i9+ i" ) '  ~ < ~ < 2  Kt ( ( - - cos  3~ + cos e) io + ilo--~ 

1 
- - -  (4.19b) K~ - 2rt z t2 

1 1 
K3 ='-~ (it3 + i,s)--~ (it4 + i~6) cos ~ (4.19c) 

The quantities i. which enter Eqs. (4.19a)-(4.19c) are defined as 

2a 2~ 
is = tl sin 0o dOo ~i f(O, ; ~)/~(0o, 0, ;c~) sin 01 dot (4.20a) 

I~ n 3~ ~ 
i 9 = sin 0o dOo f(Oj; ~)/~(0o, 0~; ~) sin 0t dot (4.20b) 

ilo = sin 0o dOo f(01; ~) sin 01 dOl (4.20c) 
3a 

i? -oo- i~= s inOodOo f(Ot;ot)fl(Oo, O~;ot)sinOtdOl (4.20d) 
n- 3ct 

1 1 0 6  

and the expression for ff finally reads 

~=I(sI2+SI3+S23)--7"~R2 + R2(~I"~IO"~oI)COSO~ (4.17) 

After noting that symmetry considerations imply that 

fe+eS23=fa+fs,3 (4.18a) 

fa.b.c (S,3 + S23)= 2 fa.&cS,3 (4.18b) 
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f2~ i19" = sin Oo dOo [2f(O, ; ~) - f(Oo; ~)] 
o6 

x I - t o  + 3t -/a(Oo, Ol; ~)] sin 01 dOl (4.20e) 

il3=fo2)sinOodOoi~'[2f(O~;~)-f(Oo;cX)+2] 

• [3 o + r~ - y(Oo, 0~; ~)] sin Ot dOl (4.20f) 

il4 = sin Oo dOo sin 01 dOl (2~1 + ~lo) d~l (4.20g) 
o b 

= sin rt il5 f l  O~ 

• [3o + rl --6(00, Oi; a ) ]  sin 01 dO~ (4.20h) 

il6 = sin Oo dOo sin 01 dO I (2~1 + r dff~ (4.20i) 

where 3 o -  r(Oo; c<), 3 | - r ( O ~ ;  ~), and 

/~(0o, 0 ~ ; 0~ ) = max { ro + 31, • } (4.21 ) 

y = y(Oo, O~ ; ~) = max{ - 3 o  + 3|,/~} (4.22) 

6 - 6(00, 0~; 0<) = m a x { t o -  r~,/~} (4.23) 

We have also indicated the value of O~ when 30+ 3| =/~ as r  a), 
while i f " -  ff"(Oo; c<) is defined through the condition - 3 o  + 3| = #. 

It is possible to verify that, in the limit of very low density, to 
order ~4 

1 1 
Q4 "~ ~-cos ~ (1 + c o s  ~ ) ( -  1 + 3 cos ~ ) + - -  - ,~ 4n ( 1 + 7 cos c~) io 

= 1 - ~ c ~ 2 +  ]--~+ + . . -  

Correspondingly, 

(4.24) 

/9 32 
(4.25) 

in accordance with the size-dependence rule for the second and third virial 
coefficients. 
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4.2. High-Densi ty  Regime (a > n/2)  

As will become readily clear, the high-density case is relatively simpler 
than the low-density one. The  solid angle which is in principle available to 
the centers of particles 3 and 4, after dropping particles 1 and 2 on the 
sphere, is the cap slice which in Fig. 6 is delimited by the points A, B, C, 
D. It is obvious that  when dist(A, B)<tr (i.e., for 0o>0g) ,  it is no longer 
possible to accommoda te  four particles on the sphere. We also observe 
that, if ~t > rr/2, then ro > ~/2 and Zo + r i > 7r. Now,  let us indicate the angle 
01 which satisfies the equat ion 2 n - Z o - Z l = p  as ~b-=~(0o;~).  Given 
0o < 0g, the locus of points which lie a distance greater than a from point 
A (or B) is defined through the conditions ct < 0, < ~(0o; ct) and / a  < ~b I < 
2 r r - r o - Z l  (or Z o + r ,  <~b~ < 2 ~ - # ) .  It thus follows that, for ct > rr/2, the 
configurational space available to the centers of the two calottes 3 and 4 is 
no longer connected whatever the relative position of particles 1 and 2 on 
the sphere. Conversely, for ct < n/2, it is always possible to find some 
configurations of particles 1 and 2 which allow the dynamical  exchange of 
particles 3 and 4 (as, for instance, in a diametrically opposite setup of 1 
and 2). In other words, for ~ = ~ / 2 ,  the system undergoes a spontaneous  
"confinement transit ion" which ultimately leads to a rigid tetrahedral  
structure when ct attains its max imum value, i.e., a r c c o s ( -  1/3) ~ 109~ 
a result which precisely follows from the condition ct = 0~(~). 

1 

o c 

1 

(a) (b) 
Fig. 6. (a) Front and (b) rear views of the sphere for ct > rr/2 with the indication of the solid 
angle available to the centers of particles 3 and 4. The arcs "y~ and 72 are at distance o- from 
A and B, respectively. 
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o r  

where 

1109 

Adopting the same notations as before, we find 

Q4=3-~nz sinOodOofl sinOIdO~ 4 n - - ~ - s A ( T )  d~l 
" l l  

(4.26) 

1 
Q4 = 1--~n2 (ii7 - i18 cos ~) (4.27) 

i17 = sinOodOo [-rc+6rccoso~+2f(Oo;~)+4f(Oi;cx)] 

x (2 re -  t o - r l  - # )  sin 0, dOl (4.28a) 

o~ doe fr sin (2~bl + ~o)  d~.bl (4.28b) i t s = f l  sin0o 0, dO1 

4.3. Radial D ist r ibut ion Funct ion 

The following expression for the R D F  holds: 

0~<0o<~  

~<0o~<n  
(4.29) 

In order to calculate the integral in g(0o), we must consider the cases 
< n/2 and ~ > ~/2 separately, as already done for the calculation of Q4. 

Let us first assume ~ < hi2. For  0o >--2~, we need to distinguish three 
subranges for ~: 

I 3( 1) h2(et)+4--~4 go--~g2, 2~ ~<0o~ <3cc 
rt (4.30a) 

<-~: g(Oo) = 3 
(h2(o~)+4--'~4go, 3ct ~< Oo ~< rc 
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x 2x Ih2(~ 

g(O~ 4 ~ 4  ( g l - l g 3 )  ' 

- f < ~ < 2 :  g(O~176 4xQ, g,--~g3 

where h2(~) = (3/8Q4) cos c~ ( - 1 + 3 cos 00, and 

go = f(O; ~) sin 0 dO = io 

i~ 
t r  - -  0 0 - -  

gi = f(O; or) sin 0 dO 

2~ ~< Oo ~< 2n - 3~ 

(4.30b) 

(4.30c) 

2 o  

= I" f(O~; co)/~(0o, O~ ; or) sin O~ dOl g2 
o o 

f . 2 1 t  O0 - -  ~t 

g3 =Joo_ ~ f(O~;~)la(Oo, Oi;~)sinO~dOl 

On the other hand, after defining the auxiliary function 

3 
hi(O~ ~) =8Q-~4 cos ~ ( -  1 + 3 cos ~) 

3 3 
+8--~4 ( -  1 + 5 cos ~)f(Oo; ~ )+  4n-~4 f(Oo; ~)2 

it follows for cc ~< Oo ~< 2~: 

cr < 2n/5: 

g(Oo) = 

(4.31a) 

(4.31b) 

(4.31c) 

(4.31d) 

hl(Oo; ~t) + 1 
] ~ ~< Oo ~<0~ ~4 \ 4ng~ -- 4g4 + g7 - -  ~ g8 COS~ , 

J 3 (  1 ) (4.32a) ] h , ( O o ; C O + ~  4Xgo-ag  4 + g 9 - ~ g l o c o s c c  , 

06 ~< Oo ~< 0o' 

h](Oo; ct) + ~ 4ng o - 4 g  4 + 2g 6 + g9 --~ g]o cos ~t , 

O~ ~< Oo ~< 2c~ 
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2n/5 < ~ < ~*: 

g(Oo)= 

0, 0 ~ < 0 o < a  

h~(Oo; ct) + ~  4Z~go-4g4 + g v - ~  gs cos ~ , 

~ <~ 0 o <~ 0'o 

3 (  , ) 
h i (0o ; a) + ~ 4rtgo - 4g,  + g 9  - -  ~ glo COS ~ , 

0~ ~< 0o ~< 0g (4.32b) 

h 1(0o ; ~) + ~ 4ngo - 4g4 + 2g6 + g9 - ~ glo cos cx , 

O~ ~< Oo ~< 2re - 3~ 

hl(Oo;cQ+16-g--~4 4r~gl -4gs  + 2g6 + g 9 - ~  g~o cos ~ , 

2rt - 3~ ~< Oo ~< 2~ 

~* < ~ < n/2: 

g (0o )=  
t 

0, 0 ~ < 0 o < a  

h n(0 o; a) + 4ngo - 4g 4 + g7 - ~ g8 cos a , 

a~<Oo<~O~ 

hl(Oo; ~) + ~ 4~Zgo- 4g4 + g g - ~  g,o cos ~ , 

O~ ~< Oo ~< 2n - 3a (4.32c) 

h I(0o ; ~) + ~ 4gg, - 4g5 + 2g6 + g9 - ~ gio cos ~ , 

0;' ~< Oo ~< 2cc 

The angle ~* = 1.28619... is the solution of  the equation 2 n -  3~ = 0~'(~). 
Furthermore,  the integrals g,, (n = 4, 5 ..... 10) are defined as 
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g 4  = f(O,; c~)/~(0o, 01; ~) sin 01 dO, (4.33a) 

f~ 
t - -  O 0 - -  

g5 = f(Ol; ~) ]~(Oo, 01; ~) sin 01 dO, (4.33b) 

g6= [ 2 f ( O , ; e ) - f ( O o ; e ) ] [ - z o + T l - ~ ( 0 o ,  Oi;e)] sin O, dO, (4.33c) 

g7 = 2 f (O , ;a ) - - f (O0;~ )+~  

X [TO + rl -- 6(00, 01; ~)] sin 01 dO, (4.33d) 

gs= sinO, dO, (2~1 + ~,o) d~, (4.33r 

x f ro+  rl - ?(0o, 01; a)] sin 01 dO, (4.33f) 

glo = sin 01 dO1 (2~1 + ~1o) d~l (4.33g) 

For cr > rt/2 we find 

g(Oo) = (gll 

~0, 

0~<0o<~ 

- gl2 cos ~), ~<0o~<0g (4.34) 

0o'~<0o~<~ 

where 

glt = f~ [ -  Tr + 6n cos ~ + 2f(Oo; ot) + 4f(01; oO ] 

x ( 2 n - z o - z  l - p ) s i n  OL dO1 

2~ - -  t O -  r I 
g12 = f2 sinOldOlf~, (2~1 q- ~1o) d~l 

(4.35a) 

(4.35b) 

Beyond the self-confinement threshold, the long-range vanishing of the 
RDF is observed as in the three-particle case. 
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As far as the triplet distribution function (TDF) is concerned, we note 
that its evaluation for the N = 4  case is tantamount to the calculation 
of C24 : 

g3(Oo, O, (~)= ( 1 - - 4 ) ( 1 - - ~ )  Sdg24 e-'V'"2"3"4' 
' 4nQ4 

3 
= 327tQ'-----j ~4(0o, 01, ~bl; c~) (4.36) 

5. D ISCUSSION 

The configurational integral was computed numerically with a pace of 
half a degree over the whole range of ~. The integrals involved in the 
expression of Q4 were  evaluated with a precision of four significant figures. 
In Fig. 7 we plot QN for N = 2 ,  3, and 4 calottes as a function of the 
packing fraction r /=�89 The dots refer to an independent 
estimate of Q4 which was obtained by means of a Monte Carlo technique. 
The numerical experiment was performed by dropping four calottes on the 
sphere at random and then computing the configurational integral as the 
a-dependent probability of generating a configuration with no overlap. We 

1.0 
N ,, 0 . 0 2  I \ 

, %', ~ ' \ \  
/ 

4 % "%" 0 . 0 1  ~ " ~  

" ,  %.% %% 

%. 
, - ,% 0 .~  0 . 4  0 .6  O.IJ 1 .0  

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

q 
Fig. 7. Configurational integral for two (---), three (--), and four calottes (--)  plotted as a 
function of the packing fraction r/. Solid circles are the results of a Monte Carlo calculation 
for N =  4. The inset shows the comparison between Q4 (--)  and the corresponding quantity 
for four parallel squares on a plane with periodic (---) and rigid boundary conditions (--). 
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found that this direct numerical estimate reproduces the analytical result to 
within the precision of the calculation, thus confirming the results found in 
the preceding section. 

The inset in Fig. 7 shows how the present Q4 compares with the con- 
figurational integral of four hard parallel squares (with side length e)  on a 
plane under rigid and periodic boundary  conditions, ttt~ Also in this finite 
system it is possible to identify a self-confinement threshold which falls at 
a packing fraction r/sq=4/9 and is topologically equivalent to the 
phenomenon occurring on the sphere for r/cal- ' -2-.4/2.  This event 
produces a cusplike singularity in the pressure equation of state of four 
squares with periodic boundary  conditions. A functional signature is also 
present in the relevant statistical properties of four calottes for ~l = r/ca,: this 
signature is rather weak in the configurational integral whose third 
derivative just inflects for ct = n/2, but is more apparent  in the R D F  profile, 
which, beyond the above threshold, vanishes over a finite range of  distan- 
ces [see Eq. (4.34)]. The functional change is sharper for the squares 
because of the shape and the alignment constraint, which also shift the 
transition to lower packing fractions. 

It is interesting to compare the self-confinement threshold of the four- 
calotte system with the percolation density of the excluded volumeJ t2~ This 

16 

12 

J~ 

0.2 0.4 0.6 0.8 

Y o 
o.o 1.o 

q 

Fig. 8. Compressibility factor flP/p of calottes on a sphere plotted as a function of the pack- 
ing fraction r/: solid circles, four calottes; open circles, 2000 calottes. ~s~ The corresponding 
quantity for disks on a plane ~ is also shown for comparison (solid triangles). The con- 
tinuous line is based on the truncated six-term virial expansion for disks. "-'~ The vertical line 
represents the close-packing threshold of four calottes, while the arrow indicates the corre- 
sponding limit attained in the hexagonal tessellation of the plane r/c p = n/(2 x/3). 
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quantity signals the occurrence of the first spanning cluster of overlapping 
exclusion spheres. For  hard disks this transition takes place at a packing 
fraction rt~Ho) " 0.22. (~3) Even if the percolation threshold is properly 
defined only for an infinite system, we can still evaluate this quantity for a 
finite system by calculating the density above which it is no longer possible 
to find a configuration that shows disconnected pieces of excluded volume. 
In the present model, the largest diameter of the hosting sphere which is 
consistent with a disconnected excluded volume can be plausibly associated 
with a configuration where three calottes touch one another, while the 
fourth stays as far as possible from the close-packed triangular cluster. 
Another possibility might be that where the four particles form two distinct 
pairs of kissing calottes tilted at a 90 ~ angle. A simple calculation yields for 

a value of 69~ for the former configuration and 67~ for the latter. 
The largest value is tantamount to a packing fraction r/:) = 0.356. This 
threshold also corresponds to the density beyond which the accessible 
volume on the spherical surface breaks into separate cavitiesY 2'13) The 
volume of such cavities shrinks to zero as soon as cx grows beyond 90 ~ 
(which is, in fact, the largest angular diameter available to five equal non- 
overlapping calottes). 

The compressibility factor of four calottes is compared in Fig. 8 with 
the corresponding quantity for 2000 calottes ~8) and for a fluid of hard 
disks. 1~4) As expected, the lower average coordination number in the 
smaller system generally results in a lower pressure: however, at very high 
densities the two curves will eventually cross each other because the surface 
fraction covered by four close-packed calottes is lower than in the infinite 
system. 

In Fig. 9 we present the radial distribution function for increasing 
densities. As in the three-particle case, we checked that the RDF is properly 

i 

0 
1.0 1.5 2 .0  2 .5  

rlo 

Fig. 9. Radial  dis tr ibut ion function of four calottes plotted as a function of r/a for increasing 
values of c~. F rom top to bo t tom (with reference to the tail of the RDF) ,  c~=72 ~ 81 ~ 85 ~ 
87 ~ 90 ~ 95 ~ 

822/75/5-6-22 
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Fig. lO. Triplet distribution function of four caIottes plotted as a function of the polar angles 
of particle 3 (01, ~), while particles I and 2 are kept fixed at angular distance 0o= 
arccos(-1/3) .  The 0~ axis points toward the reader and ranges between a and ~ (from top 
to bottom) since the function vanishes for 0~ < a, The ~bj axis is the horizontal one and ranges 
between 0 and rr (from left to right). The number on top of the vertical axis gives the maxi- 
mum value of the function. The complete representation of g3(Oo, 0), ~b)) would involve a 
mirror image of each graph corresponding to values of ~b~ ranging between n and 2~r. 
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normalized. We note that the first spatial derivative shows a cusp 
singularity for r/a = 2. 

Figure 10 shows a series of surface plots representing the four-calotte 
TDF g3(Oo, O],q~l) for 0o=arccos ( -1 /3 ) .  We note that for ct>n/2 the 
domain where g3(Oo, 01, ~ ) ~ 0  splits into two disjoint regions as a result 
of particle confinement (see Section 4.2). It is customary to contrast the 
TDF with the reference Kirkwood superposition approximation (KSA). t~5~ 
We verified that KSA overestimates triplet correlations all over the density 
range. The resulting TDF ,wh i l e  being systematically more peaked and 
sharper, still qualitatively reproduces the overall shape of the exact func- 
tion with one rather notable exception: it fails to signal the ergodicity 
threshold for 0t = n/2. In fact, according to KSA, at the above density and 
even beyond particles might still "tunnel" between the two regions of 
the spherical surface which correspond to the sharp twin peaks that are 
observed in the TDF. Such a failure of KSA quite clearly arises from the 
incorrect sampling of the intersection region common to three extended 
calottes which is not reducible to the mere propagation of two-body effects. 

6. CONCLUDING REMARKS 

In this paper we have investigated the thermodynamics of a "toy" 
model which allows an exact analysis of the interplay between statistics and 
excluded-volume geometry. The most relevant feature which is somehow 
elucidated even in such a crude caricature of a real system is the onset of 
a topological transition corresponding to the self-confinement of particles 
on the sphere. We surmise that the corresponding "locking" of the structure 
is the underlying precursory mechanism that makes the freezing of the fluid 
the necessary outlet for a densely packed hard-core system in the ther- 
modynamic limit. We plan to discuss in a forthcoming paper some aspects 
of the model related to entropy and multiparticle correlations in the light 
of some recent suggestions pertaining to the freezing of fluids in three 
dimensions/16.17~ 
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